
Development Strategies
Advanced Systems Analysis & Design 



Session Outcomes

At the end of the session, attendees should be able to:
• Describe the concept of Software as a Service
• Define Web 4.0 and cloud computing
• Explain software acquisition alternatives, including traditional and Web-based software development 

strategies 
• Describe software outsourcing options, including offshore outsourcing and the role of service providers
• Explain advantages and disadvantages of in-house software development
• Discuss cost-benefit analysis and financial analysis tools
• Describe a request for proposal (RFP) and a request for quotation (RFQ)
• Describe the system requirements document
• Explain the transition from systems analysis to systems design
• Discuss systems design guidelines
• Describe software development trends



The Past, the Present, and the Future



SaaS is a model of software deployment 
where an application is hosted as a service 
provided to customers over the Internet. 

SaaS reduces the customer’s need for 
software maintenance, operation, and 
support.

Software as a Service



Software-as-a-service (SaaS) is a form of 
cloud computing that delivers a cloud 
application—and all its underlying IT 
infrastructure and platforms—to end users 
through an internet browser. 

Other approaches are Infrastructure-as-a-
Service (IaaS) and Platform-as-a-Service 
(PaaS).

More on SAAS



Debate

Question..
Are you using SaaS?



SaaS vendors



Saas Vendors



Outsourcing is the transfer of information systems development, operation, 
or maintenance to an outside firm that provides these services, for a fee, 
on a temporary or long-term basis.

Relatively minor programming tasks, the rental of software from a service 
provider, the outsourcing of a basic business process (often called business 
process outsourcing, or BPO), or the handling of a company’s entire IT 
function.

Models:

• A fixed fee modeluses a set fee based on a specified level of service and 
user support.

• A subscription modelhas a variable fee based on the number of users or 
workstations that have access to the application.

• A usage modelor transaction model charges a variable fee based on the 
volume of transactions or operations performed by the application.

Outsourcing



A company can choose to develop its own systems, or purchase, possibly customize, and implement a 
software package.

A software package that can be used by many different types of organizations is called a horizontal application.

Software package developed to handle information requirements for a specific type of business is called a 
vertical application.

In house Software Development Options



Debate

Question..
What is better in-house or purchase a software?



When to go In House?



Three main cost analysis

• Payback analysis:
determines how long it takes an information system to pay for itself through reduced costs and increased 
benefits.

• Return on investment(ROI)
is a percentage rate that compares the total net benefits(the return) received from a project to the total 
costs(the investment) of the project.

• Net present value (NPV) of a project
is the total value of the benefits minus the total value of the costs, with both costs and benefits adjusted to 
reflect the point in time at which they occur.

Analyzing Cost And Benefits



Step 1: Evaluate the Information System Requirements

• Identify key features

• Consider network and web-related issues

• Estimate volume and future growth

• Specify hardware, software, or personnel constraints

• Prepare a request for proposal or quotation

• A request for proposal (RFP) is a document that describes your company, lists the IT services or products you need, 
and specifies the features you require.

• A request for quotation (RFQ) is more specific than an RFP. When you use an RFQ, you already know the specific 
product or service you want, and you need to obtain price quotations or bids.

• An evaluation model is a technique that uses a common yardstick to measure and compare vendor ratings.

The Software Acquisition Process



The Software Acquisition Process



Step 2: Identify Potential Vendors or Outsourcing Options

Step 3: Evaluate the Alternatives

• Existing users

• Application testing

• Benchmarking
• A benchmark measures the time a package takes to process a certain number of transactions. 

For example, a benchmark test can measure the time needed to post 1,000 sales transactions.

Step 4: Perform Cost-Benefit Analysis

Step 5: Prepare a Recommendation

Step 6: Implement the Solution

The Software Acquisition Process



• The system requirements document, or software requirements specification, contains the requirements for 
the new system, describes the alternatives that were considered, and makes a specific recommendation to 
management. 

• This important document is the starting point for measuring the performance, accuracy, and completeness 
of the finished system before entering the systems design phase.

• The system requirements document is like a contract that identifies what the system developers must 
deliver to users.

Completion of Systems Analysis Tasks



Logical and Physical Design

A logical design defines what must take place, not how it will be accomplished. 
Does not address the actual methods of implementation. 

A physical design is like a set of blueprints for the actual construction of a building. 
Describes the actual processes of entering, verifying, and storing data; 
The physical layout of data files and sorting procedures, the format of reports, and so on.

Transition To Systems Design



The goal of systems design is to build a system that satisfies business requirements.

A successful system must be effective, reliable, and maintainable:

• A system is effective if it supports business requirements and meets user needs.

• A system is reliable if it handles input errors, processing errors, hardware failures, or human mistakes. A 
good design will anticipate errors, detect them as early as possible, make it easy to correct them, and 
prevent them from damaging the system itself.

• A system is maintainable if it is flexible, scalable, and easily modified. Changes might be needed to correct 
problems, adapt to user requirements, or take advantage of new technology.

System Design



Prototyping produces an early, rapidly constructed working version of the proposed information system, called 
a prototype.

Prototyping, which involves a repetitive sequence of analysis, design, modeling, and testing, is a common 
technique that can be used to design anything from a new home to a computer network.

User input and feedback is essential at every stage of the systems development process.

Prototyping allows users to examine a model that accurately represents system outputs, inputs, interfaces, and 
processes. 

Users can “test-drive” the model in a risk-free environment and either approve it or request changes. In some 
situations, the prototype evolves into the final version of the information system; in other cases, the prototype 
is intended only to validate user requirements and is discarded afterward.

The most intense form of prototyping occurs when agile methods are used.

• As the agile process continues, developers revise, extend, and merge earlier versions into the final product. 

• An agile approach emphasizes continuous feedback, and each incremental step is affected by what was 
learned in the prior steps.

Prototyping



Rapid throwaway

This method involves exploring ideas by quickly developing a prototype based on preliminary requirements that is 
then revised through customer feedback. 

The name rapid throwaway refers to the fact that each prototype is completely discarded and may not be a part of 
the final product.

Evolutionary

This approach uses a continuous, working prototype that is refined after each iteration of customer feedback. Uses 
RAD (Rapid Application Development) methodology.

Because each prototype is not started from scratch, this method saves time and effort.

Incremental

This technique breaks the concept for the final product into smaller pieces, and prototypes are created for each one.

In the end, these prototypes are merged into the final product.

Extreme

This prototype model is used specifically for web development. 

All web prototypes are built in an HTML format with a services layer and are then integrated into the final product.

Prototyping Methods



Advantages:

• Users and systems developers can avoid 
misunderstandings.

• System developers can create accurate 
specifications for the finished system based on 
the prototype.

• Managers can evaluate a working model more 
effectively than a paper specification.

• Systems analysts can use a prototype to develop 
testing and training procedures before the 
finished system is available.

• Prototyping reduces the risk and potential 
financial exposure finished system fails to 
support business needs.

Prototyping Pro’s and Con’s

Disadvantages:

• The rapid pace of development can create 
quality problems, which are not discovered until 
the finished system is operational.

• Other system requirements, such as reliability 
and maintainability, cannot be tested 
adequately using a prototype.

• In very complex systems, the prototype 
becomes unwieldy and difficult to manage.

• Confusing the prototype with the final product.



Bottom-Up Model (part to whole) 

• A system design approach where parts of 
the system are defined in detail. 

• Once these parts are designed and 
developed, then these parts or 
components are linked together to prepare 
a bigger component. 

• This approach is repeated until the 
complete system is built. 

• Advantage of Bottom-Up Model is in 
making decisions at very low level and to 
decide the re-usability of components. 

• Example: Evolutionary Prototyping Model 

Systems Integration Models

Top-Down Model (whole to parts) 

• A system design approach where design starts from 
the system as a whole. 

• Complete system is then divided into smaller sub-
applications with more details.

• Each part again goes through the top-down approach 
till the complete system is designed with all minute 
details. 

• It is also termed as breaking the bigger problem into 
smaller problems and solving them individually in 
recursive manner. 

• Example: Incremental Prototyping Model



Approaches

Object 
Oriented
Programming

Procedural 
Oriented 
Programming




	Slide 1: Development Strategies
	Slide 2: Session Outcomes
	Slide 3: The Past, the Present, and the Future
	Slide 4: Software as a Service
	Slide 5: More on SAAS
	Slide 6: Debate
	Slide 7: SaaS vendors
	Slide 8: Saas Vendors
	Slide 9: Outsourcing
	Slide 10: In house Software Development Options
	Slide 11: Debate
	Slide 12: When to go In House?
	Slide 13: Analyzing Cost And Benefits
	Slide 14: The Software Acquisition Process
	Slide 15: The Software Acquisition Process
	Slide 16: The Software Acquisition Process
	Slide 17: Completion of Systems Analysis Tasks
	Slide 18: Transition To Systems Design
	Slide 19: System Design
	Slide 20: Prototyping
	Slide 21: Prototyping Methods
	Slide 22: Prototyping Pro’s and Con’s
	Slide 23: Systems Integration Models
	Slide 24: Approaches
	Slide 25

